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ABSTRACT
A new recommendation framework that addresses the cor-
rect and quick resolution of incidents that occur within the
complex systems of an enterprise is introduced here. It uses
statistical learning to mediate problem solving by large-scale
Resolution Service Networks (with nodes as technical ex-
pert groups) that collectively resolve the incidents logged
as tickets. Within the enterprise a key challenge is to re-
solve the tickets arising from operational big data (1) to the
customers’ satisfaction, and (2) within a time constraint.
That is, meet the service level (SL) goals. The challenge
in meeting SL is the lack of a global understanding of the
types of needed problem solving expertise. Consequently,
this often leads to ticket misrouting to experts that are in-
appropriate for solving the next increment of the problem.
The solution here proposes a general two-level classification
framework to recommend a SL-efficient sequence of expert
groups that jointly can resolve an incoming ticket. The
experimental validation shows 34% accuracy improvement
over existing locally applied generative models. Addition-
ally, recommended sequences are above 96% likely to meet
the enterprise SL goals, which reduces the SL violation rate
by 29%. Recommendations are suppressed in the case of
non-routine content which is automatically flagged for spe-
cial attention by humans, since here the humans outperform
statistical models.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ;
H.5.3 [Information Interfaces]: Group and Organization
Interfaces—Computer-supported cooperative work.

General Terms
Experimentation, Human Factors, Measurement, Reliability

Keywords
Classification, Complex Enterprise, Human-in-the-loop,
Knowledge Management, Resolution Service Network,
Service Levels, Text Mining, Ticket Resolution Sequence
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1. INTRODUCTION
Enterprises today are beginning to realize the important

role Big Data plays in achieving business goals through op-
erational Information Technology efficiency. How-
ever, decision making on operational data is proving a dif-
ficult challenge. A class of operational challenges includes
large-scale collaboration and human-based decision-making
needed to resolve service interruptions. These interruptions
are due to the dynamically changing conditions and compo-
nents of the IT infrastructure that can impact the business
and customer satisfaction. The collaboration and human-
based decision-making introduced above is often referred to
as ‘triage’. Other examples of triage include service centers,
emergency rooms, and even disaster recovery.

This research focuses on a particular application — the In-
formation Technology Service Desk (ITSD) within a large
enterprise, which resolves data center incidents that cause
service interruptions perceived by customers. The incidents
are logged as tickets. Our goal is to develop a framework for
predictive algorithms to guide decision-making that meets
Service Levels (SL) in the real world. SL is a time-and-
satisfaction-based metric that is defined for and contracted
with different lines of business customers. The related appli-
cation research challenges that are addressed here are sum-
marized as follows:
1. From an enterprise operations perspective: Thou-
sands of incidents generated weekly due to complex (diverse,
layered, networked, evolving) hardware and software have to
be resolved within real-world time constraints. It is essential
to detect the cause of each one of these incidents and resolve
the problem with minimum resources and time in order to
meet the SL goals.
2. From a methodology perspective: During analysis
we found that the incidents with irregular resolution paths
were difficult to train on, also those incidents were causing
greater SL overruns or breaches. Thus, as in current typical
research, it is not enough to compare alternative learning
models relative to each other and determine which one per-
forms better, statistically. We had to come up with methods
that improved SL's for incidents in the real world and iden-
tify and address cases of sparsity that are difficult to train
on using conventional machine learning models.

To address the challenges, our research uniquely integrates
statistical and human intervention recommendations to
improve collective decision making that resolves incidents
and achieves SL. Figure 1 illustrates the underlying model
of a Resolution Service Network (RSN), which represents
expert groups as nodes that problem-solve on a given in-



Figure 1: Resolution Service Network (RSN) termi-
nology.

put ticket. Directed edges represent existence of transition
history between two experts. We define a Ticket Resolu-
tion Sequence (TRS) with respect to a specific ticket as
a sequence of transitions between the expert groups repre-
senting progressive discovery that leads to resolution for the
ticket. Also we define a ‘distinct TRS’ as a class of TRSs
with identical sequences of transitions. The enterprise RSN
studied has 900 expert groups, and has exhibited 7250 dis-
tinct TRSs to resolve incidents generated from over 7400
Configured Component items (CIs) in the IT infrastructure.
Important ticket attributes are also shown in Figure 1. In
addition, as illustrated in the same figure, some TRSs help
the ticket meet its SL goals while others do not.

Our analysis of operational data revealed some facts also
observed before in [7, 14]. There are two kinds of knowledge
— ‘content’ and ‘transition’ — that are applied by the
involved expert groups based on the specific ticket. That
is, based on description of the problem (i.e. content), each
group tries to resolve the ticket (fix the problem) with con-
tent knowledge; or use its local RSN network knowledge
to transition the ticket to the most effective expert group
that can resolve it. Consequently existing research [14, 7,
3] mainly uses statistical learning models such as Markov
Model, Greedy Transfer Model, etc., by training on a set of
pairs in the form of <content, next-transition> to infer next
most likely transition. They reported experimental reduc-
tion in the Mean Steps To Resolve (MSTR) for a set of test
tickets where ‘steps’ are noted as number of transitions.

In addition and in contrast with current research, our
deeper data analysis also shows that a reduction in the
number of transitions, which is steps in MSTR through lo-
cally applied methods, is neither necessary nor sufficient for
improving SL. Often the involved expert groups of entire
TRS are needed in a content-specific sequence for resolution.
And, the application of each group is very dependent on the
global context governing what is to be done next, based on
what has been done by previous expert nodes. This means
that the Markov property which makes statistical learning
feasible does not generally hold in the RSN context. To illus-
trate with a simple case consider the following ticket content:
“Application X is not able to connect to database D”. The
TRS for this is the following sequence: ‘IP&Connectivity’→

Figure 2: Overview of the proposed RSN recom-
mendation framework for achieving Service Levels
for Routine (R) and Non-routine (NR) tickets.

‘Database Administration’ → ‘IP&Connectivity’. The TRS
here has global characteristics, e.g. IP&connectivity group
needs to execute problem solving twice: the first time par-
tially contributing to problem solving as a ‘collective con-
tributor’; and the second time as ‘resolver’ who also tests
the solution. We define a resolver as a group which adds
the last increment of contribution leading to resolution. In
the real world RSNs, not all groups act as problem resolver
groups.

Thus simply reducing the steps to resolve as in most exist-
ing research methods does not necessarily ensure with cer-
tainty that necessary sequencing dependencies are preserved
and the last group resolves the ticket. And, meeting the ex-
pected SL time is also not ensured by reducing the number
of steps. Certain expert groups have better content problem
solving knowledge and getting them involved early may in-
deed reduce the Time To Resolve (TTR) of the ticket. We
also observed during our analysis that many TRSs contain
wasteful transitions, which are due to groups’ lack of network
knowledge of the complexity with the total problem faced
by the RSN. Thus, the enterprise deployment questions of
real value that have to do with meeting SL in the real world
are only partially addressed with previous research.

The first significant difference in our framework herein for
achieving SL is that we seek to identify content as Routine or
Non-routine as in Figure 2 top (Routine TRS with sequence
<A,B,C,E>) and bottom (Non-routine TRS with sequence
<U,V,W,V,X,Z,Y,Z>). This is used to ensure that even
when machine recommendations do not perform well, the
humans will conduct the problem solving. And, the other
difference is that we train on entire TRSs, not just on transi-
tions which are local. That is we train on <content, TRS>
pairs if the content is routine. Hence, in contrast to local
single-transition recommendations, we recommend the en-
tire transition sequence - TRS. This strategy addresses the
above-identified challenges by preserving needed dependen-
cies using methods detailed below.

Note that we introduce the term ‘collective’ as a type of
collaboration where a specific sequence of groups must each
apply the specific problem solving knowledge in an or-
der . That is due to the collective nature of collaboration,



sequences rather that single transitions are important. Ad-
ditionally it is important to note that the SL is achieved
collectively by the entire TRS sequence of experts working
start-to-finish and not simply by local fast-working groups.
In such cases where the expertise order is mandatory, TRSs
reflect global network knowledge. Also how frequent that
knowledge was used or how often it achieved SL can be iden-
tified.

The second unique feature of our research is that we incor-
porate the ‘human-in-the-loop’. This approach requires the
machine to differentiate between the Routine (R) problem
solving where it learns and recommends effectively; from the
Non-routine (NR) where the human experts explore and
do better to achieve SL. Here machine learning determines:
(1) contextual conditions under which TRS recommenda-
tions can be reliable (Classification of content in Figure
2). If reliable, (2) recommends the TRS that assists the RSN
meet SL (Path recommnedation in Figure 2); Otherwise,
(3) ‘flags’ where it cannot do well and increases the reliance
on native human problem solving (Human-in-the-loop in
Figure 2).

Here we validate this two level classification framework
making it easier to apply machine learning by alleviating
data sparsity. First we establish our two-part main hypoth-
esis:

i. There is a direct relationship between ticket content as the
input for the RSN and the output of resulting problem
solving as the TRS

ii. The R-TRS that is associated with routine content is less
likely to breach service levels.

The hypothesis is established through analysis of both
content and TRS probability distributions. This hypothe-
sis, once established, is exploited by our two-level Dynamic
RSN Workflow Framework (Figure 2) with the following
elements:
〈Event〉: Logging of ticket content
〈Condition〉: classification of content as R/NR learnt

using TRS history
〈Action〉: If result of classification is ‘R’ then recommend

a Routine TRS (R-TRS); else flag for NR human-in-the-loop
transitioning and knowledge base improvement.

The framework, generally applicable to the class of triage
problems, leverages key points statistically: (1) Important
R-TRS characteristics already exhibited reliably in the his-
tory (e.g. resolution, SL met/breached, time to resolve, cus-
tomer satisfaction) are used to recommend to achieve similar
resolution in the future. (2) R-TRSs are selected to be fre-
quent in the training set and thus form a less unbalanced
multiclass classification problem.

The experiments on an IT Service Management data set
with 62,000 human annotated tickets show this method per-
forms 34% more accurately than the best existing locally
applied generative model on content that is routine. That
is, it predicts the global R-TRS correctly 77% of the time.
Also, 96.2% of R-TRS recommendations are expected to
meet their actual SL goals. Finally, content predicted as
NR is flagged for both content and transition problem solv-
ing by humans.

Next, we present the enterprise context in Section 2. Fol-
lowing this we survey the related interdisciplinary research
in Section 3. Then we further explore challenges and ad-
dress this through the two-phase framework in Section 4.

The following Section 5 is primarily devoted to establishing
the main hypothesis through heuristics presented. This is
followed by model development in Section 6. The experi-
ments and analysis are in Section 7.

2. ENTERPRISE OPERATIONS & DATA
Event and Incident Context: Note that while so-

phisticated infrastructure monitoring systems are in place,
the events generated within the culprit CIs (applications,
servers, network components, storage systems, etc.) are at
a fine-grained level and the overarching context is not known
for most problems to be fixed. Here we address the challenge
case where the customers call in reporting a problem, as they
perceive it (user-perceived tickets). Achieving resolution in
these cases require complex discovery-oriented collaboration
by the RSN — i.e. the IT service delivery and support or-
ganization. The best practice used for this is ISO 20000
(IT Infrastructure Library) [11] with the associated organi-
zation, process knowledge and enterprise software.

Any incident communicated (e.g. via a call) is immedi-
ately logged as a ticket with mandatory description of the
problem in text by the IT Service Desk (ITSD) agents. Then
it is either immediately resolved at the service desk or esca-
lated (using generic workflow routing lists in the enterprise
software and tacit network knowledge) to RSN groups with
the skills to provide collective problem solving. Transitions
create a path (TRS) ending with a resolver. When the res-
olution is achieved several ticket attributes become known
– SL met or breached, transition history(full TRS), culprit
CI(s), problem resolution steps, and time to resolve of the
incident.

To enable RSN problem solving there are also some docu-
mented procedures in the Incident Management Knowledge
Base (IMKB). However, it is observed that about 40% of
resolved tickets do not utilize knowledge base because of the
following reasons: (1) the problem is new and has not hap-
pened in the past, (2) content and transition knowledge are
tacit, (3) the problem is complex and cannot get diagnosed.
Thus IMKB alone cannot guarantee effective resolution of
incidents and consistent SL achievement.

Tickets and Service Levels (SL): The enterprise’s op-
erational data analyzed here consisted of 62,000 user-perceived
incident tickets with related 111,000 transitions representing
the processing by the 900 expert groups. Our analysis also
found that tickets may have 1 to 18 associated transitions
before resolution. The number of transitions before reaching
a resolver is called TRS length. For each type of ticket and
service, the priority is pre-determined in collaboration with
the customer. The priority level is set between P1 (high-
est impact) to P4 (negligible impact) based on the severity
and urgency to the customer and the type of RSN problem
solving. The priority level determines a target time to
resolve for the ticket, known as SL goal . The SL goal
is more relaxed for lower priorities. The SL clock runs per
ticket, and time is shared among all the expert groups along
the path. Observations resulting from analysis are shown in
Figure 3. Both the plots have TRS length as x-axis which
depicts the number of transitions leading to resolution. In
the top plot of Figure 3, we show that tickets are more likely
to be resolved in fewer number of transitions. As the TRS
length increases, the probability of the tickets being resolved
in exact TRS length transitions drastically drops (shown us-
ing the log scale y-axis). Note that the probability of tickets



Figure 3: SL and ticket volume versus TRS length.

drops with a factor larger than two at each increment to the
TRS length. This plot in linear scale shows an exponential
decay that is, after execution of each transition there is more
than 50% chance of resolving the ticket at that point. This
can be represented by a power law and it implies that RSN
groups try to resolve as many tickets as possible in fewer
transitions if possible. The bottom plot in Figure 3 shows
that at the same time, the tickets with greater TRS length
are also more likely to breach their SL goals.

3. RELATED RESEARCH
Collaborative problem solving is leveraged today in col-

laboration ecosystems. Question-answer microblogs such as
Stack Overflow, Quora, and WebMD have focused on tak-
ing advantage of wisdom of the ‘qualified crowd’ in order
to answer questions in respective domains. Other systems
go further to exploit content expertise and network knowl-
edge in complex problem solving. Examples include medical
systems such as TriageLogic and InXite focus on resolving
complex medical cases through collective collaboration be-
tween care providers. Work as a Service (WaaS) research in
[10] proposes a hub to achieve responsiveness and address
unpredictability. In general, however, the design of statis-
tical models to guide RSN groups to collectively achieve
SL has not been addressed. In the fields of Computer Sup-
ported Cooperative Work and Social Networks, coordination
mechanisms that address the increasing complexity of col-
laboration has been extensively studied [1]. More recently
the related concept of affordance that is ‘individual’, ‘col-
lective’ and ‘shared’ has also been introduced and discussed
extensively [5]. A relevant notion here is the ‘collective’
network behavior when individuals collectively achieve SL
goals that they cannot achieve individually. Thus, it has
been pointed out, that shared affordances are essential to
the performance improvement. However, again statistical
methods for mediating shared affordances have not been

researched. In systems engineering, transitions are shown
to add inefficiencies. A framework for measurement, trace-
ability and improvement in service-oriented environments is
presented in [12]. However in highly dynamic situations,
statically defined transitions soon become obsolete. In ad-
dition to statistical research mentioned earlier we use ‘Reso-
lution Service Network (RSN)’ concept first introduced in
[3] to analyze which tickets were incorrectly transitioned
and to identify reasons for this. The RSN concept is more
goal-directed than social networks studied in social science.
Other approaches to enhancing the knowledge management
through community aware strategies are in [5]. Moreover,
the use of event logs to reconstruct the process model as ex-
ecuted has been studied extensively by [17, 18] under the
topic of process data mining. The applications explored
include process conformance and data provenance. These
methods are relevant for extracting span time, queue time,
repeating patterns, etc. for better TRS predictions. Recent
work also studied expert behaviors in collaborative networks
and found that when task transfers happen there is some
overlap of knowledge between experts, also authors demon-
strated existence of two types of routing patterns, task neu-
tral, and task specific routing [16]. Finally, on-demand real
time score and recommendation systems are becoming in-
creasingly popular. These systems are most effective where
critical decisions are to be made in massive-scale within lim-
ited periods of time, and otherwise can get heavily impacted
by constrained and error-prone human performance. Their
applications range from intelligent decision support systems
[19], to automated response assessment systems [15, 9].

4. ENTERPRISE DEPLOYMENT AND RSN
CHALLENGES

Next we discuss as yet unaddressed challenges regarding
achieving SL. Also we present the framework overview before
proceeding to the details.

4.1 SL challenges
Context and RSN performance: Since SL time is

globally achieved by the TRS, it is not enough to recom-
mend locally ‘good’ or ‘most likely’ next transition as in
existing generative models [7]. Only if a ticket is transi-
tioned to the expert group with the ‘correct’ content and
‘correct’ transition the correct future transition occur. So
the important goal here is to recommend global TRSs that
will avoid ‘incorrect’ local transitions and thus improve the
MTTR (Mean Time To Resolve).

MTTR versus MSTR: The ‘time and SL optimal’ TRS
may or may not meet the ‘minimum number of transitions’
criteria. For example, a shorter sequence based on higher
local probability can end up utilizing groups that take more
time (e.g. with novices), thus breaching the SL. While
MSTR has been studied for RSNs, MTTR and SL have not.
Here we ask: Can we recommend TRSs that largely have met
SL previously?

Limitations of pure inference models: Existing in-
ference models [14, 7, 3, 8] focus on showing improvement
but make assumptions that the real world is static. They
do not incorporate a way to implement continuous improve-
ment strategies in an actual enterprise. Here the questions
for enterprise deployment we address are: How can we iden-
tify where the RSN is performing well, and therefore can we
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Figure 4: Dynamic RSN recommendation framework

learn from TRS history in those cases? Or, when perform-
ing poorly where and how do we need to engage humans in
addressing improvement on a continuous basis?

4.2 Overview of Dynamic RSN Workflow
The two-level framework introduced earlier is illustrated

with further details in Figure 4. The model developed is
divided to offline training (left), and on-demand recommen-
dations (right). Offline training includes computationally in-
tensive operations and they lead to construction of the clas-
sification models. Formalized details of training are given
in Section 6. On-demand recommendations apply the clas-
sifiers on the unlabeled data and recommend actions for
achieving SL goal. Formalization details of recommenda-
tions and their evaluation are given in Section 7.

Offline Operations – Top Level Training: The goal
here is to build a Bayesian binary classifier that takes Nat-
ural Language (NL) content, and identifies whether it is
associated with highly frequent distinct TRSs (marked as
Routine). By establishing the main hypothesis introduced
above that highly likely content is strongly associated with
frequent distict TRSs, we can demarcate the Routine from
the Non-routine. As shown in Figure 4, NL features are ex-
tracted from training tickets and are then used along with
their R/NR annotations to perform Bayesian inference. Then
the top-level R/NR classifier is constructed for on-demand
use. The intuition underlying the upfront R/NR classifica-
tion is that multiclass classifiers work best on data sets with
frequent patterns that have causal relationship with the tar-
get variable, in this case routine content with routine
TRS.

Offline Operations – Second Level Training: The
goal is to build a Bayesian multiclass classifier that takes
NL content and identifies a Routine TRS that is most likely
to resolve the problem. Notation ‘R-TRS’ is used to refer
to a distinct TRS that is pre-labeled as Routine. Label-
ing strategy of TRSs are discussed in Section 5. Same as
above, NL features are extracted from training tickets and

are then used along with their R-TRS annotations to per-
form Bayesian inference. Then the second-level R-TRS clas-
sifier is constructed for on-demand use. We also discuss and
address the underlying challenges of dealing with skewed
class distribution in Section 6.

On-demand Operations: Here we show the two-level
application of the method on an unlabeled ticket. First we
determine if the NL content of the ticket is associated with
either R or NR using the top level R/NR classifier. Sec-
ondly, if it is associated with R then the second level R-TRS
classifier is applied to provide the TRS recommendation for
RSN execution actions. Also SL estimation is performed for
the recommended TRS. If the content is associated with NR
class then it is flagged and turned over to the RSN for re-
solving the ticket manually and also for feedback enhancing
the knowledge base for future performance improvement. In
Figure 4 within the on-demand operations box, all of the
dotted boxes are denoting predicted values. In Section 7 we
discuss the validation and SL advantages of the framework.

5. ROUTINE VERSUS NON-ROUTINE
We first establish the main hypothesis that the more likely

inputs of the RSN are associated with the more likely out-
puts. To do this we first develop functions that indepen-
dently quantify the regularity of the content (input) and of
TRS (output). Note that if content can signal for strong
association with frequent TRSs then predicting only among
frequent TRSs leads to a more accurate classification out-
come as opposed to predicting among all TRSs in the first
place. This solution is particularly favored where a small
portion of distinct TRSs are used to resolve majority of the
tickets in the history. This is discussed further next.

5.1 High Likely Content is associated with R-
TRS

Here we first define routineness measures for content and
distinct TRSs separately. Then we demarcate R-TRSs from
NR-TRSs through the following labeling strategy : we at-



Figure 5: Normalized frequency of distinct TRSs –
Pareto Chart

Figure 6: Projected tickets in CLL-TRS frequency
space – High density of tickets in the center right
area means tickets with more frequent TRSs are
very likely to have regular occurring content.

tempt to find a subset of distinct TRSs that their content
likelihood distribution is in maximum distance from that of
their complement set. Then members of the set with higher
average content likelihood are labeled as R-TRS, and mem-
bers of its complement are labeled as NR-TRS. To avoid
trivial solutions, the aforementioned objective is subject to
a constraint that enforces minimum ticket coverage on both
subsets.

Routineness of TRS (discrete metric):We character-
ized regularity of a distinct TRS as the frequency of tickets
resolved by that distinct TRS in the training set. The more
frequent a distinct TRS is used, the larger its routineness
value becomes. Our data illustrates the skewed distribu-
tion of tickets over distinct TRSs (Figure 5). This graph
is a Pareto chart that represents normalized frequency dis-
tribution of distinct TRSs in descending order along with
cumulative percentage of tickets. In the figure the top 5.5%
of the most frequent distinct TRSs (400 distinct resolution
sequences out of 7,250) are depicted which are used as re-
solving paths for 81% of tickets. The other 19% of tickets

use 94.5% of remaining less frequent distict TRSs. This fol-
lows the well-known Pareto principle that implies most of
the ticket probability mass is accumulated on a small por-
tion of TRSs. The Pareto principle is an inherent property
of RSNs. Also it is acknowledged in the Machine Learning
community that more number of classes in a multiclass setup
inevitably leads to higher misclassification rate [4]. Here the
Pareto principle is leveraged to build a multiclass classifier
that only trains on a small portion of distinct TRSs
denoted as R-TRSs, and can precisely recommend on
a large portion of tickets.

Routineness of content (continuous metric): To
characterize the input content of the RSN we treat it as
meaningful word sequences with a log-likelihood metric that
measures the probability of the word sequence in the content
of a ticket as Content Log-Likelihood(CLL):

CLL(t;λ) =
1

|t|
∑
wi∈t

log P̂ (wi | wi−1;λ) (1)

where:

P̂ (wi = b | wi−1 = a;λ) =
#(ab) + λ

#(a∗) + λ |V | (2)

Here wi is the ith word token in a ticket t, and λ is a
smoothing parameter. Normalization (i.e. division by |t|)
is needed to establish a fair measurement for significance of
words regardless of the number of word tokens in a ticket.
Next, the probability of a word wi in the context of wi−1 is
computed. We use a bigram language model [2] where ‘#’
represents a function that computes the frequency of the
given word phrase in the ticket corpus, and ∗ represents any
word in the corpus dictionary. |V | is the size of the corpus
dictionary. In our data set, the CLL values of different tick-
ets range from −4 to −14, with −4 signifying the most likely
content.

Figure 6 projects each ticket into a two dimensional space
with the log likelihood of content (y-axis) and the TRS fre-
quency (x-axis which is also on a log scale to accommodate
the sparse tail of TRS distribution). As can be seen, there
are considerable number of tickets that are having a highly
likely content and are resolved by a highly frequent distinct
TRS. Therefore, we can now look for an α-split on the x-axis
that maximizes the distance between (1) CLL distribution
of the tickets that have a TRS frequency less than α (to be
labeled as NR) and (2) CLL distribution of the tickets that
have a TRS frequency more than α (to be labeled as R).
For simplicity, we define distance between two CLL distri-
butions as the difference between the mode values of the two
distributions.

Figure 7 illustrates the strategy to identify the optimal α
by sliding the α–cut from low-to-high TRS frequencies on
Figure 6. In Figure 7 we plot the mode difference of CLL
distributions generated by different α–cuts. As we move α
from left to right, generally the mode differences increase.

Viewed simply, the mode difference is maximized when
α reaches maximum TRS frequency which is a trivial so-
lution. However even though the largest α maximizes the
mode difference between R and NR, the volume of R tickets
is minimized at that point which is undesirable. This consti-
tutes a trade-off between the ratio of R tickets/all tickets
and the mode difference of the two CLL distributions. We
selected the value of α = 670 to address this trade-off, and
with this the R tickets are 30% of the full data set, where



Figure 7: α = 670 allows us to separate R from NR
effectively.

Figure 8: α = 670 yielding optimal cut, two CLL
distributions as NR-TRS (left) and R-TRS (right)

this α has the mode difference of 0.6 between R and NR.
Establishing the main hypothesis: In Figure 8, for this

α = 670, we depict the corresponding left and right CLL
distributions that are now labeled as NR-TRS and R-TRS
respectively. Note that R-TRS distribution is denser in the
higher log-likelihood area as compared to NR-TRS.

Part (i): This establishes the hypothesis that a consid-
erable number of tickets with frequent content (higher log-
likelihood) are resolved by frequent TRSs. This also iden-
tifies the desired α supporting causality between frequent
content and R-TRS and allows us to proceed with our two-
level classification. Essentially, what we did in this step has
introduced heuristics to label a subset of distinct TRSs as
R-TRSs and the complement set as NR-TRSs. Later all of
the distinct TRSs will be used to train the top-level R/NR
classifier, and R-TRSs will be used to train the second level
muliclass classifier.

Part (ii): Furthermore, we tie this optimal R/NR split
with SL by calculating the SL breach percentage. As shown
in 8, the breach ratio of the R-TRS class was found to be
a fourth of the NR-TRS class (2.26% to 8.25%). This sup-
ports the hypothesis that R tickets are more likely to meet
their SL. Also, if R-TRSs are recommended then the recom-
mendations are 97.74% likely to meet enterprise SL goals.

6. EXPERIMENTS USING THE TWO-LEVEL
CLASSIFICATION FRAMEWORK

Having proven the main hypothesis and the existence of
a strong relationship between frequent content and routine
TRS, we proceeded to build the classifiers. The learning al-
gorithm we leveraged is the Transformed Weight-normalized
Complement Näıve Bayes (TWCNB) [13] for both top and
second level classifiers in the Framework introduced in Fig-
ure 4. This algorithm is designed to perform well on skewed
training data, and it incorporates effective weight normal-
ization and feature transformations. Further rationale for
selecting this method is provided below.

Dampening the effect of skewed data bias: The top
level training is a binary R/NR classifier with sufficient num-
ber of training instances for both classes. In the second-level
training, the distribution of tickets over R-TRS classes is
extremely skewed. In other words, there are many more
training examples for certain TRSs as compared to oth-
ers. This causes the classifier to exhibit an inevitable pref-
erence over certain classes. In [13] a solution is proposed
for document classification by learning the word weights for
a class, by using all training data not in that class (train-
ing on the complement). By doing this the model uses dis-
tinguishing features and is less likely to overfit to content
that is labeled with less frequent R-TRS classes. Thus, we
leverage the TWCNB classifier, and instead of maximizing
P (NL content|class = c), minimizes P (NL content|class =
c) where c denotes all the training data points except those
with class label c.

Training (top and second level) and classification
(R/NR and TRS recommendation): Here the details of
our classification algorithm are presented. Our explanation
is on R-TRS training and classification since they represent
a multiclass classification, but the same paradigm is applied
to the binary case of R/NR. We modified TWCNB for R-
TRS classification as follows. Let:

1. ~t be the training set of routine tickets that previously
got resolved by going through an R-TRS: ~t = (~t1, ~t2, ..., ~tn)
and tij is the frequency of the j th word of the dictio-
nary in ticket ~ti.

2. ~RT = ( ~rt1, ~rt2, ..., ~rtn) be the labels of TRS routes
corresponding to each of the training tickets.

3. C = {C1, C2, ..., Cs} be the set of distinct TRSs.

4. ~test = (f1, f2, ..., fm) be a test ticket where fj is the
frequency of the j th word of the dictionary in the test
ticket.

Then train and predict :

ω = R-TRS Training(~t, ~RT ) (3)

Predicted label( ~test) = arg min
c∈C

m∑
j=1

fj · ω(j | c) (4)

For the function call R-TRS Training(~t, ~RT ) we use Al-
gorithm 1 that performs training. It uses a set of trans-
forms for term frequencies adapted from [13]. These trans-
forms resolve different poor modeling assumptions of Näıve
Bayes classifier including skewed word and class distribu-
tion. ω is the transformed weighted normalization function



Algorithm 1 R-TRS Training (~r, ~RT )

1: for j = 1 to m do

2: IDFj = log
n∑n

k=1 δkj
3: for i = 1 to n do
4: TFij = log(tij + 1)

5: for j = 1 to m do
6: for i = 1 to n do

7: NCij =
TFij · IDFj√∑m

k=1(TFik · IDFk)2

8: for j = 1 to m do
9: for h = 1 to s do

10: P̂ (j | Ch) =
λ+

∑n
k:rtk 6=ch

NCkj

mλ+
∑n

k:rtk 6=ch

∑m
p=1NCkp

11: ω(j | Ch) =
log P̂ (j | Ch)∑m

k=1 log P̂ (k | Ch)

12: Return ω

over P (j | c) where j can be the index of any word in the
corpus dictionary, and c can be complement of any class in
the data set (distinct TRSs in this case).

Here necessary details are provided to explain Algorithm
1: Line 2 constructs inverse document frequency transfor-
mation where δkj = 1 if the j th word of the dictionary is
in ticket ~tk, otherwise δkj = 0. In line 3, n is the number of
tickets in the training set. Line 4 constructs term frequency
transformation. Line 7, provides the length norm, where m
is the size of the corpus dictionary. In line 9, s is the cardi-
nality of the set C. Line 10, builds a smoothed probability
function that estimates the probability of j th word of the
dictionary not being in class Ch. Line 11 provides a log
weight normalization of P̂ (j | Ch).

Experimental process overview: The two-level clas-
sification in Figure 4 was applied as follows. For both clas-
sifiers we extracted features from NL content of the tick-
ets. For doing so the text was first transformed to vectors
with weighted normalized values as discussed in ‘dampen-
ing the effect of skewed data bias’ earlier in section 6. We
also dropped the stop words, and removed the words that
were less frequent than our minimum cut-off. After apply-
ing these constraints the dimensions of our feature vectors
reduced to 4623. Next we randomly sampled 80% of <con-
tent, TRS> tuples (i.e. 49763 tickets) for end-to-end model
training and 20%(i.e. 12441 tickets) for validation. That
80% is fully used to train the top level R/NR classifier, and
the routine portion of it (i.e. 14929 tickets or 24% of all tick-
ets) is used to train the second level R-TRS classifier. The
training on each level was validated by 10-fold cross valida-
tion (rotation on 90%, 10% splits). After tuning parameters
of each of the classifiers separately, we observed significant
performance in both classifiers in isolation. Then we mea-
sured the overall performance of the sequentially combined
classifiers by using the 20% validation set. Details follow.

6.1 Performance evaluation with respect to SL
To summarize, the goal of the designed framework is to

recommend a TRS only if (1) it is well-associated with the
ticket content and (2) that TRS is likely to achieve the
SL. In addition, because of the early R/NR classification it
is still ensured that human-in-the-loop ticket transitioning
is enabled for those tickets with no TRS recommendation.

Therefore, this framework can be viewed as an enhancement
over pure human ticket-transitioning process, which mainly
targets to assist a subset of tickets. Although growing the
size of the impacted subset is desired, a higher preference is
given to more reliable recommendations as they take place.
Let us assume that tickets have the following ground truth
labels, actual-R and actual-NR. Human experts can handle
(1) all actual-NR tickets, and (2) actual-R tickets that got
misclassified as NR. However, it is unfavorable if an acual-
NR ticket is misclassified as R, and is further recommended
with an R-TRS. Therefore, in this application domain the
precision of the top-level classifier and the accuracy
of the second-level classifier are more important for
the overall performance than the coverage. In particu-
lar from SL achievement perspective, it is notable that the
recall of the top level classifier is not as important as its
precision since false negatives (misclassified routine tickets)
still have a second chance to get routed through the RSN by
the knowledge of human experts.

The performance of our two-level recommendation frame-
work is evaluated by measuring the proportion of tickets
that their TRS got correctly proposed, to all tickets that
got proposed as R. This metric is formally defined as:

Overall R− Precision =
#(TRS correctly classified)

#(tickets predicted as R)
(5)

R/NR Classification – tuning the Precision/Recall
trade-off : Increasing the precision of routine class in our
R/NR classifier can significantly improve the SL performance
overall. Therefore we would like to sacrifice recall (coverage
of actual-R tickets by the top-level classifier) while gaining
more precision. This is achievable by adjusting the con-
fidence threshold of the classifier. We make our top-level
classifier propose R only if it is highly confident, and oth-
erwise it should flag the ticket for human intervention. We
define the confidence of the top-level classifier as:

Confidence = 1−H
(
P̂ (C = ‘R’ | τ)

)
(6)

Here the same as equation 4 we have:

P̂ (C = ‘R’ | τ) = 1−
m∑

j=1

τj · ω(j | C = ‘NR’) (7)

Equation 7 shows P̂ as the estimated probability of class
‘R’ given ticket τ . Also τj is the frequency of j th word
of the dictionary in ticket τ . In equation 6, H denotes the
binary entropy function as defined in [6] which takes a prob-
ability value. Confidence returns a value between 0 and 1.
The higher the confidence, the lower the uncertainty in clas-
sification. Now for all the tickets that are predicted as R,
if the confidence is higher than a cut-off θ then we consider
them as R, otherwise we consider them as UR (uncertain R)
and flag them to be handled as NR.

Figure 9 illustrates that as we increase θ, we gain more
precision at the expense of losing coverage of R class (recall).
Precision scales linearly with θ (confidence cut-off), while re-
call declines polynomially. Figure 9 also depicts how increase
in precision equates reduction in coverage of the full data set
that can be automated. This is the trade-off between size of



Figure 9: Precision/Recall trade-off for R/NR clas-
sifier.

the predictable subset of tickets versus accuracy of the TRS
predictions. We picked the confidence cut-off as θ = 0.02
which yields 82.2% precision, 66.5% recall and covers 20.2%
of the entire tickets. Next we use this θ for the validation of
our R-TRS recommendation.

7. EXPERIMENTAL VALIDATION
Next we compare three different R TRS recommendation

models applied to the enterprise data, namely: (1) Strict,
(2) Flexible, and (3)Generative greedy models.

Flexible and Strict models: For the validation of TRS
recommendations we define two different ways of claiming
successful classification on a test ticket: (1) strict TRS match-
ing: a ticket is called correctly classified if its predicted R-
TRS matches exactly with its actual TRS. (2) flexible TRS
matching: a ticket is called correctly classified if its predicted
R-TRS is within the congruence set of the actual TRS.

The congruence set of a certain TRS like T, consists other
distinct TRSs that are equally eligible to resolve same tickets
that historically got resolved by T. Here our subject matter
experts established the congruence sets. Such compatibility
between TRSs exist in the real world in order to balance the
workload among similar groups.

Baseline model —Generative Greedy: The Gener-
ative Greedy is considered a robust transition prediction
model [7]. This model is designed to make one-step transi-
tion predictions and select the most probable resolver next.
In our experiment we found that Generative Greedy has
shown effectiveness in predicting the resolution sequence for
actual-NR tickets with long actual sequence length. To be
able to compare our results, we re-defined the ‘Overall R-
Precision’ for Generative Greedy. For any test ticket pre-
dicted as R, we let the Generative Greedy also predict n
transitions at once where n is the length of the actual TRS.
If the Generative Greedy matches the actual TRS, we con-
sider it as correctly classified. The ratio of correctly classi-
fied TRSs divided by total number of prediction attempts is
considered Overall R-Precision for this method.

Figure 10 shows the overall R-precision of the developed
models as the size of the training set grows. All three mod-
els converge to a stable precision before reaching to 60% of

Figure 10: Overall R-Precision of flexible, strict, and
greedy models.

the size the training set. Many of the misclassification at
the strict model are between congruent TRSs. Therefore as
can be seen we achieved 17% improvement over strict model
by allowing misclassification within congruence sets. Also
the flexible model outperforms the baseline by 34%. (flexi-
ble:77%, strict: 60%, generative: 43%).

SL and TTR (Time to Resolve) for classified tick-
ets: The SL goal is a time duration set for each priority
level and applies to all tickets at that priority. Our esti-
mation model for time to resolve of the tickets after having
their R-TRS predicted is illustrated in Figure 11. It shows
the four priority zones (bounding squares) with the actual
and expected times. The smallest square represents the valid
duration for solving P1 tickets, and in the same order the
largest square represents the valid duration for solving P4
tickets. The actual TTR is associated with resolved tick-
ets. The Expected TTR is defined for each classified ticket
based on its predicted R-TRS which is determined by the
Mean value of TTRs associated with the predicted R-TRS.
81.4% of the points in Figure 11 have smaller Expected Time
to Resolve than their Actual. This implies that the frame-
work substantially improves TTR for routine tickets. Also,
96.2% of tickets with R-TRS recommendations meet their
actual SL goal while this is 90.8% for tickets predicted as
NR.

8. CONCLUSIONS
We have introduced a framework that can be deployed to

improve collective problem solving within Resolution Ser-
vice Networks. If a routine resolution path has historically
achieved the SL by resolving the tickets on time then it has
met the time and customer satisfaction goals. Using this
we developed our framework adaptable to enterprise deploy-
ment. The first level classifier detects whether the content
is associated with a routine path. The second level classi-
fier then recommends a path among the routine ones. If the
ticket is not associated with any routine path, it is flagged
for increasing human attention and updating the knowledge
base.

The path recommendation results are promising as they
indicate 77% R-precision for the end-to-end model. Also



Figure 11: Expected time to resolve vs Actual time
to resolve for tickets with a predicted R-TRS

the recommended R-TRSs are above 96% likely to meet the
SL goals. The overall two-level classification model has also
shown 29% reduction in average SL violation rate mainly
by preventing routine content from getting misrouted in the
RSN by the experts. More research needs to be conducted
in improving the non-routine cases by engaging the human-
in-the-loop in production environments. The research here
also lays the ground work for understanding how machines
can better help RSN problem solving by statistical learning
in the routine context; and alerting the humans in the RSN
in the case of non-routine.
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