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Abstract—Software development effort estimation is the pro-
cess of predicting the most realistic effort required to develop or
maintain software. It is important to develop estimation models
and appropriate techniques to avoid losses caused by poor esti-
mation. However, no method exists that is the most appropriate
one for Agile Development where frequent iterations involve
the customer causing time consuming estimation process. To
address this an automated estimation methodology called “Auto-
Estimate” is proposed complementing Agile’s manual Planning
Poker. The Auto-Estimate leverages features extracted from Agile
story cards, and their actual effort time. The approach is justified
by evaluating alternative machine learning algorithms for effort
prediction. It is shown that selected machine learning methods
perform better than Planning Poker estimates in the later stages
of a project. This estimation approach is evaluated for accuracy,
applicability and value, and the results are presented within a
real-world setting.

Index Terms—Software Estimation; Planning Poker; Agile
Software Estimation and Planning; Machine Learning; Classifier

I. INTRODUCTION

Software development effort estimation is the process of

predicting the most realistic effort required to develop or

maintain software based on incomplete, uncertain and/or noisy

input. Within Agile Development projects with a high degree

of customer involvement at every iteration, it is particularly

important to have accurate estimates. It provides status visibil-

ity for the stakeholders, comparing planned progress with the

actual progress. Effort estimates are used as input to project

plans, iteration plans, budgets, and bidding rounds. Typical

effort estimation is classified into three major categories:

(a) Formal and Algorithmic, (b) Expert, and (c) Analogue

estimations. Formal and Algorithmic models (ex. COCOMO,

Function Point analysis) rely on the experience gained in

previous software projects. They connect size and effort values

by means of explicit function forms, by applying regression

analysis method. Most widely used are linear and exponential

dependence [9]. Expert estimation methods (ex. Wideband

Delphi[22], Planning Poker[14]) are based on consultation

with one or more people considered as experts in software

development. These estimates are produced based on judg-

ments. Analogue estimation methods are based on analogies

between the new project and some already completed ones.

Comparisons are made between the suggested project and

similar projects based on known cost, time and effort data.

Analogue models (ex. ESTOR, ANGEL) require as much data

as possible concerning implemented projects [9]. Accurate

estimates also help avoid schedule-stress-related quality prob-

lems. About 40% of all software errors have been found to be

caused by human stress; those errors could have been avoided

by scheduling appropriately and by placing less stress on the

developers [10]. Failure to correctly interpret the meaning of

an initial mismatch between project goals and project estimates

is one of the most common wasted opportunities in software

development. This pressures the project team to eventually

commit to shorter schedules, even though this situation could

be avoided by accurate effort estimation at the beginning[19].

The goal of this research is to develop an automated esti-

mation method for Agile story cards which effectively applies

existing machine learning algorithms to historical estimation

data collected from humans. This “Auto-Estimate” method

enhances manual Planning Poker [6], the most commonly

used estimation method in Agile environments. Auto-Estimate

makes use of features extracted from story cards used in an

Agile development environment. Our research contributions

are as follows: (a) Increasing the estimation accuracy by reduc-

ing the impact due to poor estimates; (b) Demonstrating that

Auto-Estimate enhances Planning Poker in the later iterations

of the project; (c) Establishing the importance of writing well-

structured story cards; and (d) Creating an estimation tool with

easy data collection which does not require any data other

than story cards and previous effort estimates. In section II the

related work and the state of the art research in software effort

estimation will be discussed; in section III the methodology for

Auto-Estimate will be proposed, in section IV the key steps in

building and validating Auto-Estimate are shown. Results and

discussions on improved estimation methods will be presented

in section V. Finally conclusions are in section VI.

II. RELATED WORK

Predictive modeling has been widely used within IT en-

terprise environments, applications of which range from

recommendation-based IT service delivery and support [23],

[20] to defect prediction for commercial software [7]. This

research in particular aims at software effort estimation which

has been researched in different software design and develop-

ment industries. Although there have been different estimation

models developed thus far, no single model has been shown

to be out performing others. As a result there is a need

for new forecasting models due to dynamic changes in the



environment. Recently more research attention was drawn

to statistical modeling in order to address general effort

estimation challenges. Authors in [8] provided a comparative

analysis consisting of more than a dozen learning models

against different benchmarks. Also in [15] an ensemble learn-

ing methodology was proposed for effort estimation to boost

estimation accuracy. Within Agile environments, however,

there has not been much research for effort estimation using

supervised learning models.

Bakele and Turhan in [3] reported that well-structured and

detailed use cases provide higher confidence and accuracy for

effort prediction models. Also they concluded that software

effort estimation must be handled using an evolving system

rather than a static one. Motivated by these papers, we noted

that in addition to the features extracted from story cards,

project related features in Agile environment can be used

to enrich the estimation process. Development platform (i.e.

Operating system, and development tools), and development

techniques (i.e., CMMI, ISO, etc) are features that have been

shown to have most impact on the estimation process.

Agile tries to minimize the impact of insufficient estimation

accuracy by ensuring that the most important functionality is

developed first. This is achieved through a flexible develop-

ment process with short iterations. In Agile a user story is the

unit at which software features are estimated and developed.

Each story is in the language of the customer, and typically

written on an index card. The cards serve as reminders for

conversations to be had about the features. The details are

then fleshed out later in the conversations, and conveyed and

documented in the form of tests [2].

Planning Poker is an important method for effort estimation

in Agile. Participants include the programmers, testers, ana-

lysts on the team. At the start of Planning Poker, each estimator

is given a deck of cards. Each card has written on it one of the

valid estimates. Each estimator may, for example, be given a

deck of cards with numbers from the Fibonacci Series 0, 1, 2,

3, 5, 8, 13 and 21. These non-linear sequence gaps reflect the

greater uncertainty associated with estimates for larger units

of work [6]. For each user story to be estimated, a moderator

who is the product owner reads the description and then

answers any questions that the estimators have. Each estimator

privately selects cards representing his or her estimate. Cards

are not shown until each estimator has made a selection. At

that time, all cards are simultaneously turned over and shown

so that all participants can see each estimate. If estimates

differ, the high and low estimators manual their estimates. The

objective here is to learn what they were thinking about. The

goal is for the estimators to converge on a single estimate that

can be used for the story [6].

According to a comprehensive survey [2], the motivations

for using Planning Poker can be any of the following: (a)

more information is uncovered in the discussion; (b) individual

estimation avoids first-estimate bias; (c) reflects the team’s

ability to complete the tasks, and (d) the whole team feels

ownership of the estimates.

III. RESEARCH METHODOLOGY

A. Problem Statement

Based on our analysis of different aspects of Planning

Poker, we conclude that the following areas need to be

addressed rigorously. Magnitude of Relative Error (MRE) is

a widely used measure for evaluating the estimation accuracy

of different models. For a single estimate, it is defined as the

following equation:

MRE =

| Actual Effort − Estimated Effort |

Actual Effort
(1)

Also Mean Magnitude of Relative Error (MMRE) is used

to quantify the accuracy achieved overall with the improved

method. In this study, based on the estimation data collected

from the enterprise for Planning Poker, the MMRE value was

106.81% which is considerably large and the goal is to reduce

it. Also according to our data, it was observed that in Planning

Poker over-estimates are the most common cases among

all; precisely with the following distribution: Accurate:24%,

Overestimate:40%, Underestimate: 36%. Details are provided

in section V.

A drawback of Planning Poker identified was that even

though it takes every developer’s estimate into consideration,

the bias towards estimates from experts could not be avoided.

In other words, in the absence of an expert in the team, the

accuracy of estimates decreases substantially. Furthermore,

Planning Poker is less accurate when there is no previous

experience from similar tasks. (a) If the developers suggest

similar estimates for a story where they have no prior ex-

perience, they might feel a false sense of security that the

estimate is reasonable. Or, (b) the developers become more

cautious, taking the various possibilities mentioned by all

developers into account, and therefore end up overestimating

the complexity. Another shortcoming of Planning Poker is

the group polarization effect. After participating in a discus-

sion, members tend to advocate more extreme positions than

individuals who did not participate in any such discussion.

This offers a possible explanation as to why Planning Poker

increases extremes.

B. Research Contributions

The current working model, i.e. Planning Poker involves

individual estimation based on the story card followed by

multiple rounds of discussion before an estimate is fixed and

the developers can then start the development of the features

described in the story card. Based on the conducted employee

surveys [21], it has been concluded that Planning Poker works

better when there are more experts in the development team.

However, experts are not always easy to find in abundance

while forming a team, and therefore the need for more number

of experts becomes a problem. The goal with Auto-Estimate

is to eventually fully automate the estimation, thus reducing

the need of estimates from experts.

In case of Agile, more and more story card data becomes

available with the progress of the project. Auto-Estimate’s

learning algorithms train on this data from story cards and the



Fig. 1. Methodology for developing Auto-Estimate

actual effort data. By the later stages of the project there will

be larger sample of story cards and human estimates available

where the model statistically becomes more equipped to infer

the true relationship between the features and the actual

effort signal. The need for human estimates can practically

be eliminated at that point, possibly with robust accuracy for

estimations.

IV. METHODOLOGY FOR DEVELOPING AUTO-ESTIMATE

As shown in Figure 1 the method for selecting the best

learning techniques for Auto-Estimate is as follows. (1) Data

Collection: using story cards, human estimates, and actual

effort data (2) Feature Extraction: extracting key tokens using

text analysis (3) Model Construction: using extracted features

and human estimates along with actual effort to train classi-

fiers, and (4) Analysis: measuring performance to select the

best classifiers.

A. Data Collection

The required story card features, human estimation data, and

actual effort data were accessed through iteration logs stored

for each team using IBM Rational Team Concert. The data

was collected from 10 different teams including the following

features on each of the story cards: (a) Story card ID, (b)

Project, (c) Planned story points (human estimation), and (d)

Story card summary (text). To enable supervised learning the

actual effort is considered as the target signal.

B. Feature Extraction

1) Token Extraction: According to a previous experiment

[1], presence of word tokens in the story card was found

out to be important features for effort estimation. Tokens

represent a crucial part of the story content. Unigram language

modeling with respect to tokens was used as a key component

of our estimation model. Unique words and their frequencies

were extracted from the set of one hundred and twenty three

story cards. After applying an upper and lower threshold of

frequency, 752 tokens were chosen for further analysis. The

thresholds were applied to remove extremes with respect to

word frequency.

2) Features Chosen: After the extraction of tokens, the

following story card features were chosen for further analysis:

▽ TF-IDF of each token: “Term Frequency – Inverse Docu-

ment Frequency” of a word is a metric to quantify significance

of a word which takes into account word frequency and the

inverse of the counts of documents containing that word.

▽ Estimated points from Planning Poker: This feature is

selected because we want to use Planning Poker estimates as

our supporting feature. Although we know that these estimates

are not accurate, a combination of weak features is often used

to make a classifier more accurate.

▽ Number of tokens in the story: More tokens implies more

important functionality to be addressed.

▽ Story card priority (enumerated as integer): Priority (from

the customer’s perspective) for the feature to be developed

may influence the effort to be put in.

C. Model Construction using supervised learning algorithms

The features extracted are used as inputs to Weka [12]

for several classification algorithms. The process of how we

selected the learning algorithms is described below:



Fig. 2. Example of Cost-estimate matrix (as the Hadamard product of the Confusion matrix and the Cost matrix)

▽ Naı̈ve Bayes - A Naı̈ve Bayes classifier is a probabilistic

classifier based on Bayes’ theorem with an assumption of

independent features given the class. Despite its simplicity,

Naı̈ve Bayes battles the high dimensionality of the data with

the conditional independence assumption which can often

outperform more sophisticated classification methods. [5].

▽ J48 Decision tree - J48 is an open source Java implementa-

tion of the C4.5 algorithm in Weka. It is an algorithm used to

generate a decision tree. Decision trees are fitting well to the

training data when the tanning set is not linearly separable.

▽ Random Forest - Random Forest is a group classifiers that

consists of many decision trees and outputs the class that is

the statistical mode of the classes output by individual trees.

According to [4], Random Forest is suited for learning from

large datasets and avoids overfitting better than decision trees.

▽ Logistic Model Tree - A logistic model tree (LMT) is

an algorithm for supervised learning tasks, which combines

linear logistic regression and tree induction. In some previous

experiments [17], it was exhibited that LMT produces classi-

fication models that are more accurate than those produced by

C4.5, Classification and Regression Trees (CART) and simple

logistic regression on real world datasets.

Also there were two types of feature sets used by these

algorithms. In “semi-independent prediction” the human es-

timations based on Planning Poker are included as an input

feature where the purpose is to see if access to these esti-

mates can improve the quality of predictions. In “independent

prediction” input features do not include the Planning Poker

estimates where the purpose is to come up with independent

predictions purely based on story cards. We have used the

following statistical measures to verify the accuracy of our

classifiers over our test data: Precision, Recall, F-Measure,

and Confusion Matrix [16].

D. Cost-estimate analysis

Our approach for analysis was to find supervised learning

models that could outperform manual Planning Poker in terms

of the number of correct estimates. However, none of the

methods were able to substantially outperform Planning Poker.

We realized that the key deficiency in our early analysis

was that the performance of the alternative methods (listed

above) was based only on the ‘hit or miss’ numbers. That

means methods were evaluated only based on the number

of correct estimates and unduly penalized even if they were

almost correct. To address this, we leveraged the notion of

the confusion matrix and the cost matrix which are explained

below, thus achieving a more rigorous model evaluation.

1) Confusion Matrix: The confusion matrix is part of the

output of each classifier. Each column of the matrix represents

the number of instances in a predicted class, while each row

represents the number instances in an actual class.

2) Cost Matrix: The cost matrix was devised based on the

penalties due to underestimation and overestimation. Notable

studies [18] and [11] asserted that the penalty for underestima-

tion is at least twice as much as that for overestimation. Taking

this fact into consideration, the cost matrix is constructed

in a similar way as the confusion matrix with the follow-

ing key differences: The matrix contains penalty values for

misclassification where the penalty for correct classification

is 0. The penalty for classification as an underestimate is the

magnitude of the difference between the actual value and the

predicted value. Similarly, the penalty for classification as an

overestimate is half of the magnitude of the difference.

3) Cost-Estimate Matrix: The cost-estimate matrix was de-

rived by multiplying each element of confusion matrix with

its corresponding element in the cost matrix (known as the

Hadamard product [13]). This is illustrated in Figure 2. Also

the value in each cell of this matrix is considered as the cost

incurred due to that particular estimation inaccuracy. Thus,

the sum of all values in the matrix yields the aggregate cost

incurred by a particular classifier. This aggregate cost is further

used for comparison among different methods.

V. RESULTS AND ANALYSIS

In this section, the results of our experiments are stated and

analyzed from different perspectives such as aggregate cost,

mean magnitude of relative error, and distribution of estimates.

Furthermore, our views are presented about whether Planning

Poker should be eliminated entirely or it should be used in

conjunction with Auto-Estimate.

A. Comparison of approaches - Aggregate Cost

After applying different classification methods to the train-

ing data, each method generated a confusion matrix, which

was used for the cost-estimate analysis. The result of Cost-

estimate analysis was the aggregate units of cost incurred by

using that classification algorithm. Figure 3 shows the total

costs incurred by different classification methods sorted in



Fig. 3. Aggregate costs incurred by different classification methods (with and without Planning Poker – i.e. PP)

ascending order. Based on these results, the following methods

were more cost-effective as compared to manual Planning

Poker: (1) J48 + PP (i.e. J48 Decision Tree with Planning

Poker estimates); (2) J48 (i.e. J48 Decision Tree without

Planning Poker estimates); (3) LMT + PP (i.e. Logistic Model

Tree with Planning Poker estimates); (4) LMT (i.e. Logistic

Model Tree without Planning Poker estimates).

Figure 3 also reveals the fact that including human estimates

as a feature does consistently result in more cost-effective

estimations. Moreover, our observation of J48 Decision tree

is that the algorithm was able to well correlate the tokens

with actual effort. Secondly, the cost-estimate analysis proved

that although some of the classification methods were outper-

formed by manual Planning Poker, two of the methods were

able to cut down the costs. Thus showing promise in reducing

the losses incurred due to poor estimation. In contrast, Random

Forest performed poorly suffering from small training set.

B. Comparison of approaches - Error

A standard measure of estimation accuracy is Mean Magni-

tude of Relative Error (MMRE) (Equation 1). Table I presents

the MMRE values associated with each of the methods.

From Table I, it can be deduced that the following methods

have a significant lower MMRE than manual Planning Poker:

(1) J48+PP (2) J48 (3) Random Forest (4) LMT+PP. In line

with cost-estimate results, here in terms of MMRE, J48

(both with and without PP augmentation) outperforms manual

Planning Poker. In addition, we observed that half of the

methods in Table I were able to cut down the MMRE values,

thus increasing the estimation accuracy. This proved the key

part of our hypothesis that is estimation accuracy improves

with the help of supervised learning.

C. Comparison of approaches – Distribution of estimates

The distribution of estimates was also analyzed in order

to verify the suitability of selecting classification methods for

Auto-Estimate. Figure 4 illustrates a bubble chart representing

probability distribution of estimates’ outcome resulted from

different classification methods. These distributions (as op-

posed to the hit or miss distributions) are highly effective when

rigorous error analysis is needed. Each column represents a

probability distribution of the estimate outcome corresponding

to a particular classification method. As per Figure 4, J48+PP

outperforms other methods since (1) it has the largest proba-

bility of correct estimates, and (2) it has a greater probability

for its over-estimates as compared to its under-estimates. As

mentioned earlier, over-estimates are preferred over under-

estimates since slight over-estimation is not detrimental to an

Agile project. Also per Figure 4, any method on the right of

manual Planning Poker has shown to have a higher under-

estimation probability than manual Planning Poker itself, and

they also have shown lower correct-estimation probabilities

than the manual Planning Poker; both of which are undesirable

for Agile projects. In contrast, desirable methods on the left of

manual Planning Poker such as J48+PP, LMT, and LMT+PP

have lower under-estimation probabilities while maintaining

higher correct estimation probabilities.

D. Eliminate planning poker or use it as an enhancement?

According to all previous comparisons, we come to the

conclusion that the following three classification methods are

consistently superior to manual planning poker: (1) J48 +PP,

(2) J48, and (3) LMT+PP. Thus they should be included in

a classification ensemble for Auto-Estimate methodology. An

inherent characteristic of J48 and LMT that came to benefit

here is that decision trees generally perform well on small

training sets.

Inclusion of human estimates in the input helped most of

the methods to perform well as compared to their counterparts.

We generalize this interpretation as the following trade-off:

Including manual estimates improves the performance of au-

tomated software effort estimation at the expense of running



TABLE I
MMRE FOR DIFFERENT CLASSIFICATION METHODS

Classification Method MMRE

J48 + Planning Poker 91.75%

J48 92.32%

Random Forest 97.33%

LMT + Planning Poker 103.28%

Manual Planning Poker [Baseline] 106.81%

Random Forest + Planning Poker 108.95%

LMT 125.26%

Naı̈ve Bayes + Planning Poker 180.09%

Naı̈ve Bayes 204.40%

labor-intense Planning Poker to produce manual estimations

out of story cards. On the flip side, eliminating Planning Poker

from automated effort estimation costs the project with less

accurate estimates, but at the same time benefits the project

with complete automation of the estimation process saving

substantial human time and labor.

VI. CONCLUSION

This research proposes ‘Auto-Estimate’ based on a compar-

ison of alternate methods to enhance Agile’s manual Planning

Poker for effort estimation. We have shown that the J48+PP,

J48, and the LMT+PP all performed better than manual Plan-

ning Poker. There were essential points leveraged: (1) Includ-

ing human estimates as a feature improves performance. (2)

Consideration of the error distribution and the aggregate cost

is shown to be significant when comparing alternative classifi-

cation methods. (3) As more data becomes available with each

iteration, Auto-Estimate gets better trained on the story cards,

human estimates, and actual effort data. Therefore by the

later stages of the project the algorithm is more reliable than

manual Planning Poker estimates and thus suitable as a tool

for augmenting human effort estimation. For future work we

propose research with larger datasets, and using features which

were not used in this experiment (developers’ demographics,

story criticality, and other system and framework aspects).
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