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Abstract—Cloud-based services today depend on many layers
of virtual technology and application services. Incidents and
problems that arise in such complex operational environments
are logged as a ticket, worked on by experts and finally resolved.
To assist these experts, any machine recommendation method
must meet the following critical business requirements: 1) the
ticket must be resolved, meeting specific time constraints or
Service Level Targets (SLTs), and 2) any predictive assistance must
be trustworthy. Existing research uses probabilistic models to
recommend transfers between experts based on limited features
intrinsic to the ticket content, and does not demonstrate how
to meet SLTs. To address this lack of research and ensure
SLT-compliance for an incoming ticket given its recommended
sequence of experts, there needs to be an accurate time-to-
resolve (TTR) estimation. This research aims to identify im-
portant features for modeling time-to-resolve estimation given
the routing recommendation sequences. This work particularly
makes the following contributions: 1) constructs a framework for
assessing TTR estimations and their SLT-compliance, 2) applies
the assessment to a baseline estimation model to identify the
need for better TTR modeling, and 3) uses language modeling to
study the impact of anomalous content on the estimation error,
and 4) introduces a set of dynamic features, and a methodology
to rigorously model the TTR estimation.

Index Terms—Collective Expert Networks; Language Mod-
eling; Regression; Resolution Time Estimation; Service Level
Targets; Ticket Resolution; Ticket Routing Recommendations

I. INTRODUCTION

Within today's complex cloud operations made up of layers
of technology and application services, customer-perceived
problems or incidents often arise in the hundreds or thousands
daily. These must be resolved by IT Service Management goals
that are critical parts of any service level (SL) agreement:
• Resolution Goal: the problem must be resolved by restor-

ing service to the business customer's satisfaction; and
• SLT Goal: the resolution process must meet time con-

straints set by Service Level Targets (SLTs) agreed-to
with the customer based on the priority of the ticket.

The Resolution Goal is addressed by logging problems as
tickets and then transferring them to the knowledgeable experts
(selected from among many) with skills to contribute to the
problem resolution. In this area of research a typical represen-
tation of experts (i.e. nodes) and their transfers (i.e. edges) is
as an expert network [8], [5]. A ticket ‘transfer sequence’ is
a path along the network; machine recommendations aim to
reduce transfers needed for resolution.

TABLE I: Glossary: Key Terms

Term Description

Expert A technical support team with specialized knowledge
and particular set of skills, and responsibilities

Ticket t a ticket instance with content/attributes, T a ticket set
SLT Target resolution time defined for each t ∈ T

chosen according to a predetermined priority level.
TRS Ticket Resolving Sequence of experts for t.

R-TRS is a TRS that is labeled as ‘Routine’.
RecTRS is a recommended TRS (i.e routing recommendation)

TTR Time To Resolve (i.e. resolution time) of a ticket.
Only defined for the resolved tickets.

ETTR Expected Time To Resolve of a ticket.
Used for arriving tickets to estimate their TTR.

MTTR Mean Time To Resolve computed for T .
MSTR Mean Steps (i.e. transfers) To Resolve computed for T .

Existing research addresses the Resolution Goal, but the
SLT Goal remains unaddressed. The significance comes from
the need to improve response times in discovery-oriented
environments and make accurate SLT-preserving recommen-
dations. This has also become important for a large emerging
class of time-critical applications related not only to Opera-
tions Management (i.e. IT service desks); but also to disaster
recovery, emergency management, and triage centers.

A. Related Work

Here we first summarize related work needed to understand
research contributions leaving further details to [7]. The key
terms for this research and frequently used expressions are
introduced in Table I.

‘Transfer-based’ Others' Research: Methods [8], [4], [1]
for IT service management applications propose generative
models based on P (transfer | ticket content) and recom-
mend ‘most probable’ transfers between the experts. These
models assume that the Markov property holds and thus
recommend transfers only based on the previous node. (Note
that this memoryless modeling does not considering workflow
relationships between experts). In [5], a fixed short look-ahead
subsequence was introduced to partially mitigate the problem
caused by local modeling. However, all these transfer-based
models used a common evaluation metric, i.e. MSTR, which
does not address the challenge of timely resolution mandated
by the SLT Goal above.

‘TRS-workflow-based’ Prior Research: We next differen-
tiate our own previous stream of research as ‘TRS-workflow-



based’ models using P (TRS | ticket content), and briefly
discuss our earlier results [7] used as the basis for the current
paper's research. The closer examination of transfer sequences
of resolving tickets revealed existence of ‘collective’ behav-
iors: 1) the skills of an expert apply based on previous experts
and this might be repeated when resolving; and 2) sometimes
longer transfer sequences do better in meeting SLTs. Here
the entire sequence of experts (which may include repeating
nodes) is called the TRS. We found that the longer TRSs arise
from the complexity of virtual layers and multiple components.
Thus making demands of specific expertise in the context
of what has happened previously in the workflow. We thus
asked the question “can we improve performance w.r.t. time
by considering TRS workflows globally rather than just local
transfers?".

B. Current Research Motivation & Overview

Our previous research in [7] only partially answered the
above question. Validation found that while resolution ac-
curacy increases by recommending R-TRSs (workflows), the
TTR estimates (ETTR) are deviated from actual TTRs (ATTR)
resulting in high time estimation errors. This discrepancy
warrants further research here for two reasons:

• A discrepancy between ETTR and ATTR for ticket t
could be desirable! Particularly, if ETTR is less than
ATTR, that could signal an improvement resulted from
taking a RecTRS that is more efficient. This is significant
because currently SLTs are relaxed to accommodate worst
case scenarios. By providing methods to improve the
resolution time for individual recommendations, we also
help improve the SLT goal setting and manage resources.

• When deploying a recommendation system within IT
operations, the trustworthiness of the RecTRSs should
be achieved by precisely estimating TTRs. This results
in trust from the professionals whose performance is
measured by meeting time constraints.

To address this, Sections II and III present the integration
of our previous and current research into a more complete
‘training, testing and assessment’ framework in Figure 1.
By applying this framework we show 1) that for certain
resolved tickets, their TTR is deviated from ETTR of their
SLT-preserving RecTRS, and 2) that if this discrepancy better
understood can provide opportunities for improving not only
TTR, but also SLT in aggregate. To do this, the assessment
method of Section III also analyzes the error of ETTRs and
causes for estimation ‘errors’; thus identifying those regions
where the ‘errors’ indicate scope for further time improvement.

The next step is to understand the reaction of the experts to
ticket content that is ‘surprising’ and consequent increases in
resolution time. This is achieved by building a language model
for each R-TRSs during training, and measuring the cross-
entropy of a test ticket w.r.t. its RecTRS's language model.
This allows us to verify whether high time estimation error
is correlated with content that is deviated from the inherent
language model of RecTRS.

Results in Section IV show that tickets with high cross-
entropy or ‘surprising’ content are strongly correlated with
the high ETTR errors. This actually means we need a better
estimation model that captures not only the dynamics of
surprise, but also all other factors contributing to the dynamic
reaction of the experts leading to high estimation errors. Using
this result as a basis we complete the framework details
for selecting RecTRSs based on improved time estimates
by considering the experts dynamics. Further research and
conclusions are in Section V.

II. ANALYSIS OF CEN ACHIEVEMENT OF SLT GOALS

Through exploratory analysis it was found that 24% of all
the TRSs have three or more experts (sometimes repeated more
than once) to provide add-on and contributory knowledge. We
identified this type of problem solving detected as collective
problem solving [6]. We also use the more conceptual term
below ‘Collective Expert Network’ or CEN to refer to expert
networks with this behavior. The CEN on a set of resolved
tickets T is a directed graph where experts and transfers in T
are represented by nodes and edges, respectively.

A. Enterprise Data Characteristics

The dataset for this research is obtained from the IT
infrastructure and operations of a large insurance company
using complex clouds and systems supporting best practices
in IT service management. The rich ticket content included
incident description content, transfer logs, timestamps related
to transfers, actual time to resolve, time-sensitive service level
alerts, etc. This dataset includes 150,000 tickets along with
processing timestamps generated by over 900 technical support
teams which include more than three thousand personnel.
On average around 20,000 incidents are arisen from 7,500
configuration items each month. Also on average around 8,000
incidents are reported to the service desk by service clients.

SLT Related Definitions and Data Characterizations:
For each type of ticket and service, the priority is negotiated
according to business needs in collaboration with the customer.
The priority sets a ‘target’ for time to resolve known as SLT.
E.g. "Priority 1 tickets have to be resolved in 14 hours";
though, some tickets might be completed earlier. It is important
to note that the SLT is a somewhat relaxed time constraint
associated with the a range of incidents of a certain priority
level. Thus the TTR may be greater or less than that SLT.
Also the SLT is more relaxed for lower priorities. The SL
clock runs per ticket, and all the experts along its TRS path
contribute to the TTR. The SLT is said to be ‘breached’ if the
TTR is greater than the SLT. The priority level is set between
P1 (highest impact) to P4 (negligible impact) based on the
criticality to the customer and the type of problem solving
needed. Our analysis found that tickets may have 1 to 18
associated transfers before resolution, and tickets with more
transfers are more likely to breach their SLTs. We also found
that the CEN tries to resolve as many tickets possible (85.4%)
in one-to-two transfers after the service desk.



Fig. 1: Overview of Time Optimal TRS Recommendation Framework

B. TRS-based Recommendation Results

In an enterprise with the service desk as the first node that
sets the clock, our previous research [6] found that the CEN
works hard at meeting SLTs and is more successful on Routine
or frequent ticket content. We discovered an important pattern
that frequent ticket content is ‘highly relevant’ to certain
frequent TRSs. Furthermore, of those frequent TRSs approx.
98% met their associated SLTs. This provided the basis for
the recommendation framework in Figure 1:

Recommendations based on content classification: In-
coming ticket is classified using a two-level classification
framework introduced by our prior research in [7]. The top
level classifier labels the ticket content as Routine or Non-
Routine (Figure 1 Box A). If the content is labeled as ‘Non-
Routine’ then it is not used for further recommendations, but
flagged for unassisted expert-driven resolution process. This
helps retain only those tickets for which there is solid classifi-
cation evidence ensuring greater accuracy to promote trust in
the recommendations. If the ticket gets labeled as Routine,
it will be followed by a second level classification which
recommends a ranked list of TRSs based on the classification
confidence for the incoming ticket (Figure 1 Box B).

Meeting the Resolution Goal: By recommending the
Routine TRSs on frequent content, prior research established
a 34% improvement in the accuracy of the recommendations
when compared to the greedy baseline. In addition, it was
found that the two-level TRS classification model has high
precision (77%) when TRSs are recommended. Thus, estab-
lishing that RecTRS is an existing resolving sequence with a
high likelihood to meet its SLT.

Meeting the SLT Goal: Next there are two factors related
to evaluating a proposed TRS: 1) SLT and 2) ETTR. However,
in prior research we limited ourselves to SLT evaluation and
found that 99.8% of the tickets in the history that achieved
their SLT are also expected to achieve their SLT after taking
RecTRS (i.e. SLT Recall = 0.998). This firmly established
that the TRS recommendations are reliable and meet SLTs.

Moving to current research, we wish to identify opportuni-
ties to improve on, and not simply meet, SLTs. Thus, also

improving the aggregate SLT performance of CEN on T . This
requires us to examine ETTR vs ATTR for RecTRSs. Existing
time estimation models for ETTR are very approximate. The
goal is to have better methods for time estimation for RecTRSs
in Figure 1 Box C. Furthermore, since existing research does
not well-address recommendation and validation against time-
constraints, it thus became important to first conduct research
into an error assessment framework for TTR estimation. This
is reported next.

III. UNDERSTANDING ETTR TO IMPROVE RESOLUTION
TIME ESTIMATION

We first show that by developing and using a method for
assessment (leveraged in Figure 1 Box C) we can motivate
the design of better features for time estimation for Box
C which can then in turn be used for the selection of an
SLT-optimal RecTRS (Circle F). This expands prior work by
taking into consideration not only SLT achievement, but also
the estimated time performance of recommendations validated
over actual resolution time. For developing this assessment, a
held-out test set of 3,560 tickets were used from which 1,636
tickets received recommended TRSs from box B in Figure 1
(the remaining 1,924 were flagged as Non-Routine). The
performance of resulting recommended TRSs is assessed and
summarized in Table II. Specific steps underlying this analysis
are as follows:
• For the fraction of test tickets for which the TRSs are

recommended, we used an expectation model to further
estimate their TTR. We used TP,R−TRS to denote a
subset of the training set that includes all tickets with
priority P that were resolved by a particular routine
TRS R − TRS. For a test ticket τ with priority P and
recommended path RecTRS the ETTR is estimated as
the mean TTR of all tickets in TP,RecTRS , formally:

τ.ettr =
1

| TP,RecTRS |
∑

t∈TP,RecTRS

t.ttr (1)

• In order to compare ticket with different priorities within
a unified scale we normalized all ETTR and ATTR values



TABLE II: Assessment of RecTRSs - ETTR vs ATTR
Assessment ETTR?ATTR Proposed Actual % test tickets

Investigate 1: > SLT Met SLT Met 65.9% [1078]
Ignore 2: > Breached SLT Met 0.2% [3]
Better 3: <= SLT Met SLT Met 31.8% [521]
Better 4: <= SLT Met Breached 1.9% [31]
Human 5: <= Breached Breached 0.2% [3]
Human 6: > Breached Breached 0.0% [0]

by their corresponding SLTs, thus generating NETTR and
NATTR values. As a result of normalization if NETTR>1
then recommended TRS is estimated to breach its SLT,
and if NATTR>1 then its actual SLT was breached
according to the ground truth.

• For a test ticket τ we define estimation error (squared
error) as: (τ.nettr − τ.nattr)2.

The resulting six regions are next subject to causal analysis
that leads to design of better estimation models. To achieve a
deeper understanding, Table II presents SLT, ATTR and ETTR
properties of tickets within each region and an assessment in
the first column. Note the last column reports the probabil-
ity (and frequency) distribution of test tickets over different
regions.
• Region 1: While meeting SLTs, t.ETTR > t.ATTR. This

needs to be investigated due to the fact that the higher
ETTR estimates could be due to inaccurate (means based
on history) estimation method. This motivates the further
analysis and potentially considering the CEN's dynamic
features in the next section, and thus designing improved
methods for Box D of Figure 1. The output of this can
then be more accurate, resulting in reliable SLT achieving
recommendations that take less time.

• Region 2: Here the proposed RecTRSs are not appropri-
ate for recommendation and thus not investigated further.

• Region 3: Here the proposed RecTRSs are actually
improving the TTR and used as RecTRSs utilized in final
selection circle F in Figure 1.

• Region 4: Here the proposed TRSs are actually benefiting
the business contractually by avoiding breaches and used
as RecTRSs in final selection circle F of Figure 1.

• Region 5: Not used for recommendation, flagged and sent
directly to humans in Box A of Figure 1.

• Region 6: Not used for recommendation, flagged and sent
directly to humans Box A of Figure 1.

Using the assessment of the ETTRs in Table II, our next
goal is to further ‘Investigate’ TTR estimation methods for
Box C of Figure 1 to gain insights and identify features that
can yield more precise TTR estimation and thus improve the
RecTRS selection process in Box D. This motivates the design
of more rigorous ETTR models.

IV. EVIDENCES OF DYNAMIC CEN BEHAVIORS

Note that the ‘Investigation’ of tickets in Region 1 (mo-
tivated above) requires investigation of external features for

new estimation models which will improve the framework
of Figure 1 Boxes C, D, and F by selecting from high-
confidence RecTRSs using reliably low TTRs. Thus, the result
is a new TRS recommendation model which proposes a pareto-
optimal TRS that is characterized by the optimal combination
of high recommendation confidence (i.e. P (TRS|t.content))
and low t.ETTR. The estimation model in Section III leverages
the Mean TTR of the RecTRS for a given priority, and
thus lacks explicit consideration of ticket content. We there-
fore ask: Could this be a cause for inaccurate estimation?

A. Content Deviation vs ETTR Error

Path-Priority Language Models: For each test ticket τ
with priority P , and recommended path RecTRS, we aim to
relate the language used in τ.content to the language of all
tickets in the history (training data) which had priority P and
got resolved by τ 's RecTRS. The idea here is to measure
how surprising the incoming content is to the RecTRS.
Here we need a reliable model for the linguistic state of
(Priority,TRS) pairs. Therefore, we define a path-priority
language model for each (Priority,TRS) pair in the training
set. This is constructed using Bigram language models with
Katz back-off smoothing [3].

Cross Entropy of Content: Next for a test ticket τ , we
quantify its content deviation w.r.t. its corresponding language
model for (P ,RecTRS), using cross-entropy computation:

H(τ, LM(P,RecTRS)) = − 1

N

N∑
i=1

logPLM(P,RecTRS)
(bi) (2)

Here there are N bigrams in τ , represented as bis and
PLM(P,RecTRS)

(bi) is the probability of the bigram bi under
the language model for (P ,RecTRS). A higher cross entropy
for a ticket implies more deviation from the linguistic state of
its RecTRS. For each test ticket τ we compared its min-max
normalized cross entropy (NCE) against its time estimation
squared error (SE). For training, we used the content of
41,800 natural language tickets to build 118 unique language
models. Then 3,200 test tickets were carefully sampled for
experimentation where each was ensured to receive accurate
RecTRS (that is, matching its actual TRS). Analysis reveals
insights:
• In the condition where there is a large estimation error

for a ticket (SE>5), the normalized cross entropy also
happens to be large. The correlation analysis for this case
resulted in R2 = 0.5156 which signifies strong positive
correlation between time estimation error and normalized
cross entropy. In other words, when the resolution time is
mis-estimated by a large margin, ticket content is largely
deviated from its RecTRSs' language models. With no
conditions on the estimation error the normalized cross
entropy is only weakly correlated with the estimation
error. The positive correlations are shown in Figure 2 to
illustrate the existence of a linear relationship between SE
and NCE (regression line summarizes the relationship as
NCE = 0.0443SE + 0.2903 with R2 = 0.1194). This
relationship is demonstrated more transparently on the



Fig. 2: Squared Error of NETTR vs Normalized Cross Entropy
(per each test ticket)

aggregate level in Figure 3, where larger NCE results
in higher Normalized Mean Squared Error. However, the
unconditioned relationship here is not as strong as the
relationship where SE>5, due to the fact that a consider-
able fraction of tickets (26.4%) with low estimation error
(SE<1) happen to have high normalized cross entropy
(NCE>0.3). This indicates that not all tickets with high
linguistic deviation are inherently complex for the CEN.
This also means the linguistic models of historical TRSs
alone cannot capture factors contributing to time estima-
tion.

• High estimation errors mainly result from tickets with
breached SLTs. 97.8% of tickets with SE>1 are breached
(Figure 2). This uncovers a major pain point for path-
based ETTR model in which 96.9% of tickets with an
actual breached SLT will get estimated as meeting their
SLTs. Therefore path-based ETTR model is incapable of
(1) detecting such anomalous tickets, and (2) accurately
estimating on them.

• SLT Breach ratio (likelihood to breach) increases as the
NCE increases as shown in Figure 3. Thus, a dissimilarity
metric between ticket content and the expertise of a TRS
(such as NCE) qualifies as an important metric for better
TTR estimation. This is in conformance with [10], which
suggests that a breach in SLT generally happens due to
unusual, complex or ambiguous content.

These insights lead us to requirements for a better TTR es-
timation model that must leverage dynamic features available
early in the resolution process to detect anomalies (such as
surprising content) and use them in the estimation process.

B. Further Research in CEN Dynamics

Motivated by the above analysis, our ongoing research
goals are to achieve lower estimation error using an ensemble

Fig. 3: Normalized Cross Entropy vs Breach Ratio and Nor-
malized Mean Squared Error (aggregate level)

multivariate regression model defined at an expert-level. ETTR
for a ticket is modeled as the sum of expected contribution
time (ECT) by each intermediate TRS node, and expected res-
olution time (ERT) at the last node. Therefore dynamic time-
related features that potentially affects each expert's response
time are:

• expertise profile at each node: which is extracted by
a novel iterative Expectation-Maximization algorithm
which builds on logistic regression introduced in [9].

• estimation of load at each node at time θ + ∆θ: which
uses simulation grounded on the live load of the whole
CEN at time θ. In a similar context, queue simulation has
shown effectiveness in IT service engagement according
to [2].

The next step is to develop underlying methods for inferring
intrinsic features that affect the experts' response times. These
features will feed into ECT/ERT models for each expert.

V. CONCLUSION

This research addresses a weakness in the treatment of time-
related validation of recommendations. By assessing errors and
causes, we show the need to go beyond error measures that use
static historical data.The analysis shows that unusual content
results in a ‘shock’ to the collective expert network perceptible
as an increase in the SLT breach ratio, and an increase
in the time estimation error. There remain other causes for
poor estimation including network load. Further research in
considering dynamic network features is thus motivated. The
benefit of early and accurate resolution time estimation is
not only achievement of SLTs, but also an improvement on
the mean time to resolve of the tickets. Consequently, lower
resolution times imply a decrease in average load of open
tickets in the network, and an increase in experts' availability.
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